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\}M " Abstract
Several simple queueing models, which are commonly used as
text book examples, have explicit steady-state solutions, which
to date have escaped notice. These solutions are easily computable.
In addition to their didactic interest, the results, presented
here, are also useful in the analysis of more complex gueueing

models.
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1. Introduction

The queueing models M/Em/l and Em/M/c and, to a lesser
[
extent, their bounded versions M/Em/l/K+1 and Em/M/¢7K+c are

familiar topics in texts dealing with the theory of queues. The
analysis is mostly based on transform methods. Even when clearly
and succinctly presented, as e.g. in Kleinrock (1], this analysis
involves a number of formal steps, which are difficult to the
student lacking in mathematical maturity. The same comments apply

to the discussions of the M/Hm/l queue and similar models, in

which the Erlang distribution is replaced by the hyperexponential
distribution. The number of journal articles, devoted to these
particular queues, is very large. A substantial number of

references may be found in [5]; they will be omitted here.
The purpose of this paper is to show that, even with Em

replaced by a probability distribution of phase type (PH) [2, 3, 5],

these queues have highly tractable steady-state solutions. Except
in the case of the unbounded PH/M/c¢ queue, these solutions are
fully explicit and require only the evaluation of one or more

readily computed matrix inverses.

We recall that a PH-distribution F(*) with representation
(a, T) is the distribution of the time till absorption in=the—
in the (m + 1) - state Markov process with generator
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and initial probability vector (a, am+1). The square matrix T
is nonsingular, has negative diagonal elements, nonnegative off-

E diagonal elements and satisfies Te +‘2? = 0. In order to avoid

trivial considerations, we shall assume that a

m+1 = (0, so that

the row vector a is a probability vector. We further assume

(without loss of generality) that the matrix T + g?-a is

irreducible. The representation (g, T) is then said to be

irreducible.

The mean u; of F(-) is given by uj = - arle. The

irreducible generator T +'gfog has a unique, positive station-

ary vector Tm , which is given by

1

(1) T = - ujar”

The probability distribution F(+) itself is given by

(2) F(x) = 1 - a exp (Tx)e, for x 2 0,

and it, as well as its density, are readily computed by the

numerical solution of the system of differential equations

v'(x) = v(x)T, for x 2 0,

v(0) = -1
(3)
F(x) =1 - vix)e,

P'(x) = !(x)ge, for x =2 0.
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The familiar (generalized) Erlang and hyperexponential dis-

tributions are particular PH-distributions, respectively with

o Al e 0

representations

[
[

T = ’ a = (1, 0, ...,0),

[ e

-

with Aj>0, for 1 s j < m, and

e TR

T = diag (-11' eesyp -Am)l

e

= (011 320 ceey Gm)'

R ATy

with Aj >0, &y >0, for 1 £ j s m.

The following lemmas are basic to the sequel. ;

Lenma 1

Let (a, T) be an irreducible representation, then for ;

A > 0, then matrix AI - le'a - T is nonsingular.
Its inverse, which is given by

1 1

1

4

4 OI-deg-Mlt=r-mreggrar-ntesar-n”

is strictly positive. The quantity £(A) is equal to the Laplace-

Stieltjes transform £(s) = a(sI - T)-l‘g?, of F(-), evaluated at

s = ),




B

If the matrix AI - le‘a - T were singular, there would

exist a vector u » 0, such that

(5) uT+Ai(ue) a-2Aus=0.

If

ie

e = 0, then the nonsingularity of AI - T implies that

. As this is a contradiction, we may normalize u by setting

e
]
o

1. Postmultiplying by e in (5) now yields that u 2? =0,

s

d that u = Aa(AI - T)"}. 1t follows that

5

ut = 2a(Ar - MM = A £(1) = 0,

which is clearly impossible. The vector u is therefore the zero

vector and the matrix is nonsingular.

We may now write

-1
(AL - dera - Mt a a1-m72 E - Aeca(AI - 'r)‘l]

had v
= (AI - -r)'l{z+z; [A ea(AI - T )‘1] |
& J
- g = .
= (AI - T) 1{I+A9_-g(AI-T) 12,}01-?) 19_] JL
v-

It is immediate from (2) that o(AI - T) ' e =1 - £(),
so that Formula (4) follows by elementary manipulations. By using

classical properties of differential equations, it was shown in

(3] that the vectors a exp (Tx) and exp (Tx) g?, are positive




e

1

fcr x > 0. This implies that the vectors ao(AI - Ty and

-1 .0 1

(AT - T) " T° are positive. Since (AI - T) = is nonnegative,

we conclude that the inverse in (4) is a positive matrix.
Lemma 2
The maximal eigenvalue n of the positive matrix

(6) R=A(I - deea = ML,

1

is given by n = A(A - c*) ~, where c* is the unique real

solution of the equation

1

(1) Ag(cI-7) " e=1.

Moreover, if -t is the abscissa of convergence of the transform

f(s), then -t < c* < A, The eigenvalue n is less than one, if

and only if A ui < 1.

Proof.

Let u be the positive left eigenvector of R, corresponding
to its Perron-Frobenius eigenvalue n and let u bec normalized

by ue=1. The equation u R = nu, leads to

Au=2Xmu-2Ana-nuT, and the latter equation leads, upon

postmultiplication by e, to n =-§, where d = u g? > 0.

Upon substitution into the preceding equation for u, we

obtain u =1 a [}A -4 I- %]-1. Since u e = 1, we now readily
obtain the equation (7).




The function ¢(c) is strictly decreasing, positive and

o A e

convex on (-1, ) and has a pole at ¢ = -t. It tends to zero as
¢ tends to infinity. The equation (7) therefore has a unique

real solution. 1If lui <1, then ¢(0) = Aui < 1, so that c* < 0,

and therefore 0 < n <1l. 1If Aui = 1, we obtain ¢(0) = 1, and

hence n =1. 1If lui = ¢(0) > 1, then c¢c* is positive and

n > 1. Finally Aa(AI - T) "1 e=1- £(1) <1, so that c* < A.

2. The M/PH/1 and M/PH/1/K+1 Queues

The M/PH/1 Qqueue with Poisson arrival rate A may be
studied as a Markov process with the state space
E=1{0, (i, j), i 21, 1 s j s m}, where the state 0 corresponds
to the empty queue and (i, j) indicates that there are i 21

customers present with the service in course in its phase 3j.

The generator Q of that Markov process is given by

0 -2 Aa 0 0 « ..
1 | 1° T-AI  AI 0 « ..
2 E 0 ™©:a T-AI A « ..
8 o= 3 , o 0 ™ TAT ... |,
4 0 0 0 y S SN

in block-partitioned form. The pair (a, T) is here the irreducible
representation of the service time distribution F(.). By i, we




denote the set of states {(i, j), 1 s j < m}.

The stationary probability vector x of Q is partitioned

into Xgr X30 Xor ecey where the vectors Xye iz21l, are of

dimension m. It is explicitly given by the following theorem.

Theorem 1

Provided that o = Aui < 1, we have

xo 1 - p’

(9)

X = (1 -p) R, for i 2 1,

where R is the matrix, defined in (6).

Proof

The equation x Q = 0, is equivalent to

-Axy + X 2? =0,
o
(10) Axpa + %) (T = AI) + (x, T) a =0,

AXjop * X (T = AI) + (%54, ™) a=0, fori=2.

Postmultiplying each equation, but the first, by e and recalling

that Te = - g?, we obtain

Xipp T = Axj8 for i 2 1.

R e N e g




Substitution into the equation (10), we obtain that

Xy (AT - xera = T) = A x, &, and x,.,)(AI - 2erz - T) = Ax;,

for 1 =2 1.

It now only remains to verify that Xy = 1l - p. Since the

normalizing equation reduces to

*q E Xg & R* e =X, + x5 0a R(I- R)“l e = x5 al(l - R)'.1 e =
i=

we see that the queue is stable if and only if

p < 1.
The preceding equation yields upon substitution for R that
-1 -1 _ -1
X8I - R) " e=x,a T(lea + T) ~ =

xg &l + de-aT™) ¢

Vv
= X5 + X%, -1)¥ Y g[_-gl‘ I] e =1x5+x90p (1-p)71 = 1,

i

since yuj = - g Tl ¢. This completes the proof of the theorem.

Corollary 1.

The stationary queue length density at an arbitrary time is
given by

for i 2 1,

1,

LA AR LR
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This is also the stationary density of the queue length following

departures.

Proof

Only the second statement requires proof. The probability

that i customers remain following a departure is given by

O o
X, T X.,.T
Sidl = _ TAtl- T = = Y;r for i 2 0
= © (1-p) @ (I-R) "R T
—\)—

v=l

since R g? = A e, and (1l-p) & (I-—R)‘.1 e = 1.

Corollary 2

Given that there are i 2 1, customers in the stationary
quéue at an arbitrary time t, the conditional distribution of the

residual service time is of phase type with representation (gi, T),

with 8. given by

B, = (a R* &) a R, for i = 1.

The mean of this distribution is given by

iqp71 e), for i = 1.

= -(g R g_)‘l(g_ R
As i tends to infinity, the conditional distripution of the

residual service time tends to the PH~distribution with represen-

tation (u, T), where u is the vector defined in the proof of

Lemma 2.




4

T,

11

The stationary distribution W(+) of the waiting time in
the stable M/PH/1 queue was obtained in a particularly simple
form in [2]). It is shown there that W(-) is the PH-distribution

with representation (§, L), where

i p T,

L

T+p '.r..o'lv

The same method of proof as in Theorem 1 also leads to the
explicit solution of the bounded queue M/PH/1/K+l1l, in which all
customers arriving, while there are K+1 customers in the system,

are lost.

Theorem 2

The stationary probability vector x = E%o, Xyv eoes §K+i]
of the generator Q for the M/PH/1/K+l dqueue is given by

X; =X 2 R, for 1 s i < K,

1

xo a RK(-AT- ),

Xp+1

where the matrix R is given in Formula (6) and x, is given by

X -1
X, = g[zni—mx'r'l]_e_ .
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K
a. The sum E R* in the preceding formula should not be v

written in closed form, since the matrix I - R may now be

singular.

b. The overflow process of an M/PH/1/K+1 queue is an example
of a Markov-modulated Poisson process. It may be informally de-
scribed as a Poisson process which is turned on only when the
Markov process Q of the M/PH/1/K+l queue is in one of its
states (K +1, j), 1 s j s m.

Further details and applications may be found in Neuts and Kumar

[4].

3. The PH/M/c/R+c Queue i

We now consider a service system with ¢ identical exponen-

tial servers, each of rate u. The arrival process is now a

renewal process of phase type, whose interarrival time distribution
F(*) is of phase type with representation (a, T). There are only
K waiting spaces; any customers arriving, while there are K + ¢

customers in the system, are lost.

This queueing model may be studied as a Markov process Q
on the state space E = {(i, j), 0 s i s K+¢, 1 s 3 s m}. The
index i is now the number of customers in the queuve and j is

the phase of the interarrival process.
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The generator Q is given by

T 19 O o .
pwI Ty 1°4a 0 e
o 2ur T-2uI  T%.a ...
o o 3L T-3uI ...

cuI T-cul T a ’
o cul  T-cul ™:a

)
o o cul T+T .q-cul

'
1
‘.

The stationary probability vector x, partitioned into K+ c + 1

M-Vectors X., Xys ccer Xgyoo satisfies the equations

(11)

(12)

x T+ux, =0
(%53 °) g+ x, (T- iul) +

(%51 °) a +x;, (T-cul) +

(1+1) ux;, =0 forlsisc-l1,

Cux;,y =0 forcsisK+c-1,

O
(g1 T) & + Xgyo (T + I0:a - cul) = 0,

The same device as in Theorem 1 leads to

51_1 20 = min(i, c¢) u?si?_:

for 1 s i < K + ¢c.

AT« N

T, YT

TS

-
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Substitution into the equations (12), leads to

- - -1
io “u_‘l T

X, = (H)ux;,, (I - ipeeg - 7L,

Xy = Cux,,, (cuI - cupe-g - )71,

= ° - . - -1
Xpee = (XgecI ) & (ouI - cueca - T) °,

We now set
R(1) = iu(iuI - ipe-a - ML,

and

- -1 o)
Y = (ew) 7 xg, T,

The following theorem then holds.
Theorem 3

The vector X is given by

AK+1 C‘l A -1
X0 ™ Y c aR(c) Tj; R{e~v) (-uT *),
=

AK*I c"t A
a R(c) TT R(c-v),
val

AK*‘c‘i"‘l
51 =Ya R (c),

for 1 <i s ¢ -1

forc <sisK+c¢c-1,

for 1 < i s ¢

for 1 s i s c-1,

for ¢ s i ¢ K+c.

e ciadie 5

a




- - T
-

15

The constant Yy is uniquely determined by the normalizing equation.

Remarks

3 .y —p—— e 3 SO ———alll

The probability that i, 1 < i s K + ¢, customers are present

immediately after an arrival is given by

o
X, T
2 = - 0

e "Wu%In
x 1°

—)) -
V=

Y SR ST T I

since by adding up the equations (l1), we obtain

K+c o RK+c :

X, (T +T.0) =0, S %, e~ 1. :

vZ- v |
K+c K+c

It follows that E X, = 7, so that z x, T ¥ e
V= v=

The stationary distributions of the waiting time at arrivals
and at an arbitrary time are easily computed, once the marginal

stationary densities of the queue length at arrivals and at an

arbitrary time are known.

4. The PH/M/c Queue

The unbounded PH/M/c¢ queue may be studied as a Markov
process, whose generator Q is the obvious analogue of the matrix

for the bounded case. This queueing model does not have a fully
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explicit steady-state probability vector. It is nowever a simple

example of a Markov process, which in the ergodic case has a
modified matrix-geometric stationary vector x. The vector x,

partitioned into m-vectors x;, i 2 0, is of the form

2
-x.o’ !1' e e 0 p !C-l' .x_C-lR' x*-ln aee [ ]

The matrix R is now the minimal nonnegative solution to

the matrix-quadratic equation

(13) cuR? + R(T - cul) + ™% a = O.

The matrix R has its maximal eigenvalue less than one, if and
only if cu > ui-l. This is the usual equilibrium condition for

the GI/M/c queue.

The vectors x o <ot Xo-1’ satisfy the equations

XogT+HuXy =0,

0
(14) (x;_ ; T) g+ %, (T=4uD) + (4 +1) ux, ., =0, for 1 < i s c-2,

(X °) a + Xy E‘ = (c=1) uIl + cy R] =0,

c-2

- -1 =

By postmultiplying by e in (13) and recalling that I - R

is nonsingular, we obtain

(15) cuRe=1T°
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By the same device as in the proof of Theorem 1, we may

transform the equations (14) for c¢ 2= 2, into

|
I
-] L
50--]451‘1‘, :’
x, = (i+1l) u Xi41 (iul - ipe-a - T)-l, for 1 s i s ¢c-2 t'
X1 [}c-l)ul = (c-1) pe.a = T - cué] =0, f
4

c-2 -1
; Xxje+x,_, (I-R) " e=1.

The penultimate equation determines the vector X, UP to a

multiplicative constant. It is now obvious how all the vectors

Xgr s Xo_ys WAY be uniquely determined.

The preceding statements all follow by applying general
theorems proved in [5]. We shall limit our discussion here to

that of some computational aspects.

The matrix R is computed by successive substitutions in
the equation

L
§
1 }

141 (cur -l

R = R? culepl - T)°

It is readily seen that Tg = 0, implies that the j-th row of R

is zero. The rows with index j such that Tg > 0, are strictly

positive.
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The latter observation is very useful, when m is large,

but the vector g? has few positive entries. 1In the case of the
Em/M/c queue, for example, one may readily verify that the only

non-zero row of R is the m-th row, given by

j .
ij = (le) ' for 1 < j < m.

The quantity u, = (le)m, is the unique root in (0, 1) of the
equation

A m
zZ = (X_ﬂ:u-cut ) .

The vectors Xgr coev X,y WAy be computed as indicated

above. In rare cases, where this recursive method of solution
leads to overflow, the equations (16) may be solved iteratively,

using the normalizing equation to keep the successive iterates

within a compact set. 1

The stationary distribution W(-) of the virtual waiting
time is readily seen to be given by

c-1
(17) W(x) =

-_—l=- - -—l- -

= \l-x (:-ns\wl. [— b’vu(I-R)}_‘;'
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for x 2 0. It may easily be computed by numerical solving the

differential equations

v'(x) = v(x) cu(rR - 1),

v(0) = x__, (I-RS‘.

Similar equations may be derived for the distribution of the i
waiting time at arrivals. 2
i
Y
:
?
;

ars ottt .
e T AN~ v
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